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Abstract—The presented work examines the feasibility of
coordinating a large-scale multi-agent system according to a
time-varying probability density function using nature-inspired
control techniques. The proposed method works in a decentral-
ized manner where only information about neighboring agents
positions are required. The information is then used to estimate
the local density which further is used to generate a velocity
command. Building upon previous work, a feedback law based
on heat equation is extended by a feed-forward term based on the
continuity equation. This accommodates a velocity field driving
the agents towards the desired time-varying spatial density. We
show how the proposed technique can be used to track both
simple and complex time-varying densities. The proposed control
law is tested in a simulation to verify its performance.

Index Terms—Swarm Robotics Control, Density Based Con-
trol, Multi-agent System, Heat Equation, Continuity Equation

I. INTRODUCTION
This paper explores the compatibility of swarm control with

time-varying formations. The concept of swarm control refers
to the control of the coordination and movement of multiple
agents, and has in recent years gained increased attention and
research efforts [1]. Large-scale multi-agent systems emerge
in various settings such as autonomous vehicle fleets, opinion
dynamics or herd analysis. Applications of large-scale multi-
agent control has a growing potential due to the continuing
development of robotics and autonomous systems. Deploying
many agents in a coordinated manner enables advantages in
terms of redundancy, reconfigurability and scalability. These
properties are useful for numerous tasks, such as search-
and-rescue missions, distributed transportation coordination or
autonomous driving for vehicle fleets.

Moreover, swarm control separates the control objectives to
a local and global level, facilitating specialization of robots
focusing on local tasks (such as sensing or motion) while the
more complex global tasks (such as consensus or formation)
are solved in a distributed manner overcoming economic and
computational constraints.
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The research of swarm control has utilized physical prin-
ciples of natural systems and flocking phenomena to achieve
similar abilities [1], as well as modelling the discrete place-
ment of agents as a spatial density – so-called mean field
approximation [3].

Previous work include modelling the configuration space
as a grid of cells, with the density of agents described as a
arkov chain and their movement controlled using a Markovian
matrix [2], [6]. [7] instead achieves the decentralized control
with a continuous vector field, applying the heat equation to
mimic an appropriate swarm motion. This approach is further
explored in [5], by extending it with feed-forward control and
agent localization in situations of constrained sensing between
agents, and in [8] by analyzing the guarantee for collision-free
control in one dimensional space.

The work presented in this paper builds on the work of
[7]. The swarm of agents are controlled by a deterministic but
time-varying velocity field which mimics the behaviour of heat
transfer, resulting in a velocity field driving agents in a locally
uniform manner to the desired spatial density. Each agent is
given the information of the desired spatial density formation,
and locally estimates the current density formation as a kernel
density estimation based on the positions of other agents. The
difference between the desired and estimated density at each
agent is then used to generate the velocity field, yielding a
distributed control input for the motion of each agent.

Contribution:
Extending the setting from [7] to include a time-varying

desired density formation, we propose a feed forward term
in order to retain the same asymptotic stability properties.
Given the nominal control architecture in [7], the feed forward
gain can be modelled as the inverse solution of the continuity
equation. We further show that there exists an analytical
solution for Gaussian densities, which can be extended to
complex distributions using Gaussian Mixture Models and
optimal transport theory.

The rest of the paper is organized as follow. Section II
presents the control problem and estimation method of local
density information. Section III presents the added feed-
forward term and provides analysis on its properties, stability
and convergence. Section IV describes implementation of the
problem and provides simulated results of the added feed-
forward term. Finally, Section V states the conclusion and
outlook of the work.
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II. PROBLEM STATEMENT

Let S = {r1(t), r2(t), ..., rN (t)} be a homogeneous swarm
of N agents with point mass dynamics moving freely in a
planar configuration space R, i.e ri(t) ∈ R,R ⊆ R2 ∀i. Let
fR(t,x) denote the swarm density of the configuration space
dependent on time and coordinate x ∈ R, and v(t, ri(t)) the
velocity field acting on agent i at time t. The continuous time
dynamics can then be expressed as (1a) and (1b). We refer to
[7] for a detailed derivation.

ṙi(t) = v(t, ri(t)) (1a)

ḟR(t,x) = −∇ · [v(t,x)fR(t,x)] (1b)

The swarm density control objective is to design a velocity
field control law v(t,x) given a desired time-varying density
fd
R(t,x) ∈ C1 such that:

fR(t,x) = fd
R(t,x) ∀t. (2)

We tackle the problem by applying the control architecture
proposed in [7]. Figure 1 and 2 describe the high level control
architecture and the control algorithm respectively. The main
idea, which will be derived in Section III, is to find a control
law ṙ(t,x) = v(t,x) consisting of the feedback law derived
in [7] and expanding it with a feed forward term to enable
tracking of time-varying target densities while retaining the
asymptotic stability properties of the nominal feedback law.

As evident from Figure 2, the velocity field v(t,x) is a
function of both estimated and target swarm densities. The
target density which is constructed analytically is trivial to
evaluate. We do not however have direct access to the swarm
density. Consequently fR(t,x) must be estimated using local
density estimation techniques. Similarly to [7] we employ
Gaussian kernel density estimation:

f̂R(t, ri(t)) =
1

Nhd

N∑

j=1

[K(ri(t)− rj(t))] (3a)

K(x) = − 2

π
exp (−xx⊤

h2
). (3b)

where N is the number of agents, h is the smoothing parameter
and d is the dimension of configuration space.

III. CONTROL DESIGN

Given a static desired swarm density function fd
R(x) the

previous approach in [7] applies a local density error estimate
to compute a velocity field. In the derivation of this field, the
heat equation plays a crucial role. Their approach however
relies upon the assumption that the desired density is constant
in time. To overcome this assumption we introduce a feed for-
ward gain from the reference signal fd

R(t,x). The derivation of
the feed forward gain results in solving the continuity equation,
and thus the heat equation is accompanied by a fellow PDE.

Solving PDEs like the continuity equation can be notori-
ously hard, yet we will show that for the special case of a
desired density modelled as Gaussian Mixture Model with a
time-varying mean, analytical solutions exist. Furthermore, we
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ṙi(t) = vi

�
t, ri(t)

�

�(t, ri)

g(t, ri)

fd
R(t, ri)

f̂R(t, ri)

�↵r

1

f̂R(t, ri)

vi

�
t, ri(t)

�

1

fd
R(t, x)

ri(t) rj(t)

j 2 N (i)

f̂R(t, x)
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Fig. 1: The figure shows the high level control architecture for
a swarm of agents. Figure is taken from [7] and modified.
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ṙi(t) = vi

�
t, ri(t)

�

�(t, ri)

g(t, ri)

fd
R(t, ri)

f̂R(t, ri)

�↵r

1

f̂R(t, ri)

vi

�
t, ri(t)

�

1

fd
R(t, x)

ri(t) rj(t)

j 2 N (i)

f̂R(t, x)
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Fig. 2: The inner block diagram of the Density Control
Algorithm shown in figure 1. g(t, ri) is the feed forward gain.

will extend this result to complex distributions by using aspects
of optimal transport theory.

A. Velocity field generation using heat and continuity equation

Let the difference between the current and desired swarm
density be

Φ(t,x) = fR(t,x)− fd
R(t,x). (4)

In [7] the following feedback law for controlling each agents
velocity was proposed as

vfb(t,x) = −α
∇Φ(t,x)

fR(t,x)
. (5)

They further showed, assuming that the desired density
is constant in time, that the proposed feed back law in (5)
transforms equation (1b) to the heat equation (6). They also
showed that this results yields some desired properties to the
closed loop behavior of the swarm, in terms of asymptotic
stability.

Φ̇(t,x) = α∇2Φ(t,x) (6)
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When accounting for the time varying desired densities, the
closed loop behavior of Φ(t,x) gets slightly perturbed by an
extra term ∂

∂tf
d
R which is no longer zero:

Φ̇(t,x) = ḟR − ˙fd
R = α∇2Φ(t,x)− ∂fd

R
∂t

(t,x). (7)

To compensate for this we take inspiration from control
theory and introduce a feed forward term

vff (t,x) =
fd
R(t,x)

fR(t,x)
g(t,x), (8)

where g(t,x) is the feed forward gain field.
Accounting for the feed forward term (8) we get the

following agents dynamics:

ṙ(t) = vfb(t,x)+vff (t,x) =
−α∇Φ(t,x) + fd

R(t,x)g(t,x)

fR(t,x)
,

(9)
such that

Φ̇(t,x) = −∇ · [−α∇Φ(t,x) + fd
R(t,x)g(t,x)]− ∂fd

R
∂t

(t,x)

= α∇2Φ(t,x)−∇ · [fd
R(t,x)g(t,x)]− ∂fd

R
∂t

(t,x).

(10)

To retrieve the same closed loop properties as in the nominal
case of static desired density, we get the following condition
on the feed forward gain g(t,x):

∇ · (fd
R(t,x)g(t,x)) +

∂

∂t
fd
R(t,x) = 0. (11)

Looking closer at equation (11) one recognizes the continu-
ity equation, governing mass conserving flow of a compress-
ible fluid.

Our main result is that by introducing the feed forward
term in (8) that satisfies the continuity equation in (11) with
respect to the desired swarm density fd

R(t,x) in addition to
the feedback law (5), we retain similar controller performance
as in the nominal case with static desired density. That is,
the desired feed forward gain g(t,x) is the flow field of the
exact density we are trying to track. Which along with its
mathematical beauty also is a very logical result.

Statement 1. Consider a swarm S(t) commanded with
continuous desired density function fd

R(t,x) where the motion
of each agent is controlled as in equation (9). Choosing the
feed forward gain g(t,x) such that it satisfies the continuity
equation (11) with respect to the desired density function,
yields the same asymptotic stability properties as proved in
Theorem 6 in [7].

Proof. To conduct the same type of stability proof as in [7]
we introduce a relative agent velocity

ũi = ṙi −
fd
R(t, ri)

fR(t, ri)
g(t, ri). (12)

and define the following positive definite function as the
Lyapunov function for the swarm:

V =
1

2

N∑

i=1

(
fR(t, ri)

D

)2

(ũi)
T
(ũi)

=
1

2

N∑

i=1

∇Φ(t, ri)
T∇Φ(t, ri)

(13)

Note that this function is defined at agent locations to
ensure that V is positive definite, because it is guaranteed that
fR(t, ri) > 0∀i. Taking the time derivative yields,

V̇ =

N∑

i=1

∇Φ(t, ri)
T∇Φ̇(t, ri). (14)

Recalling that g(t, ri) satisfies the continuity equation,
we can use the heat equation Φ̇(t, ri) = α∇2Φ(t, ri). The
continuation of the proof is conducted exactly as in [7], and
we hereby conclude that asymptotic stability is achieved. For
a more detailed analysis and conditions we refer to [7].

B. Solving the continuity equation for time-varying Gaussian
densities

Statement 2. Consider a time-varying density function pa-
rameterized by a Gaussian distribution with a time-varying
mean µ(t), such that fd

R(t,x) = N (x;µ(t),Σ) as in (15).
Then the flow field candidate g(t,x) = µ̇(t) satisfies the
continuity equation (11) with respect to fd

R(t,x).

fd
R(t,x) = |2πΣ|−1/2 exp

[
− 1

2
(x− µ(t))⊤Σ−1(x− µ(t))

]

(15)
Proof. Taking derivative with respect to time yields

∂fd
R

∂t
=

∂fd
R

∂µ
µ̇(t). (16)

Further using that µ(t) is only a function of time we get

∇ · (fd
Rµ̇) =

∂fd
R

∂x
µ̇ (17)

From the Gaussian distribution with time-varying mean (15)
we have that ∂

∂xf
d
R = − ∂

∂µf
d
R. Using this together with

equations (16) and (17) we get

∇ · (fd
Rµ̇) =

∂fd
R

∂x
µ̇ = −∂fd

R
∂µ

µ̇ = −∂fd
R

∂t
(18)

which concludes the proof.

C. Extension to complex time-varying densities

A Gaussian mixture model (GMM) defined in (19) can be
used to parameterise complex distributions.

P (x;θ) =

K∑

i=1

piN (x;µi,Σi) (19a)

K∑

i=1

pi = 1 (19b)

pi ≥ 0 ∀ i ∈ [1,K] (19c)
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where K is the number of mixture components.
In [4] an interpolation technique between Gaussian mixtures

was introduced in an optimal transport theory setting. The in-
terpolation builds upon an auxiliary GMM where the Gaussian
components have-time varying means and optionally time-
varying covariances. This yields a framework to parameterize
complex time-varying density functions. By adding one feed
forward gain for each Gaussian component in the GMM, our
results in Section III-A and Section III-B are directly extended
to the case with GMMs with time-varying means.

Statement 3. Consider a swarm S(t) commanded with a
continuous desired density function parameterized as Gaussian
Mixture Model (GMM), where the means are time-varying
such that µi = µi(t) ∀ i ∈ [1,K]. Choosing the feed forward
term

Vff =
1

fR(t,x)

K∑

i=1

piN (x;µi(t),Σi)µ̇i(t) (20)

will convert the dynamics in (1b) into the heat equation in
(6) and hence the same stability properties proved in Statement
1 are retained.

Proof. Leveraging the linearity of the divergence operator
we have that

∇ ·
K∑

i=1

piN (x;µi(t),Σi)µ̇i(t) (21a)

=

K∑

i=1

pi∇ · [N (x;µi(t),Σi)µ̇i(t)] (21b)

Further recalling from Statement 2 that

∇ · [N (x;µi(t),Σi)µ̇i(t)] = − ∂

∂t
N (x;µi(t),Σi) (22)

and using the linearity of the differentiation operator we get

∇ ·
K∑

i=1

piN (x;µi(t),Σi)µ̇i(t) (23a)

= −
K∑

i=1

pi
∂

∂t
N (x;µi(t),Σi) (23b)

= − ∂

∂t

K∑

i=1

piN (x;µi(t),Σi) (23c)

which we recognize as the continuity equation (11) for a
time-varying GMM.

Since the feed forward term satisfies the continuity equation
the closed loop dynamics of the density error Φ(t,x) will
satisfy the heat equation (6), and hence asymptotic stability is
obtained.

IV. SIMULATION RESULTS

In order to evaluate the performance of (9) we conduct a
series of simulations where we compare the tracking ability
of time varying densities of our control law to it’s predecessor
introduced in [7]. Figures 3 and 4 illustrates the quantitative

performance gain achieved by the added feed forward term.
All simulations were conducted with a smoothing parameter
h = L/20 for the local density estimator (3a), where L is the
size of the square domain, and diffusion constant of α = 5 in
(6).

The complex distribution in (4) was generated by sampling
frames from a video of a walking man, generating Gaussian
mixtures for the individual frames and then interpolating

(a) Without feed forward control

(b) With feed forward control

Fig. 3: Tracking of a Gaussian distribution with a time varying
mean without (a) and with (b) feed forward control. The
simulation was conducted with N = 50 agents. The heat map
of the desired density is plotted in the background.
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between them with an auxiliary Gaussian mixture model as
described in [4].

For the frames, the GMMs were generated by relat-
ing each pixel to a component of (19) where the mixture
weight coefficient pi is directly proportional to the pixel
intensity. This paper is also accompanied by supplemen-
tary videos for a more comprehensive understanding and
visual comparison, which can be accessed through the link
https://larsrpe.github.io/NORDIC_ATIC.

(a) Without feed forward control

(b) With feed forward control

Fig. 4: Tracking of a complex multivariate Gaussian distri-
bution with time varying means without (a) and with feed
forward control (b). The simulation was conducted with N =
300 agents.

V. CONCLUSION & OUTLOOK

By continuing the exploration of control applications of
the heat equation, the purpose and feasibility of time-varying
density control of large-scale multi-agent systems are further
documented. The analytical results demonstrate the simple
nature of nature-inspired control techniques. The simulation
results demonstrates the tractability of the objective, and the
generality of the solution (the system input was a generic mp4-
video). The simulation showed, however, the limitations of the
distributed density estimation method resulting in oscillating
behaviour where agents are concentrated and agents getting
stuck when spread out. This could be because the density
estimation method is based on local information, such that
high-density areas yield high gradients and low-density areas
yield close-to-zero gradients.

A logical next step in the exploration would be to extend the
time-varying velocity fields into a finite-horizon control task,
realizing a Model Predictive Control technique for large-scale
multi-agent systems.

Moreover, future works are encouraged to investigate the
relation and potential synergies with Optimal Mass Transport
theory. Implementation of a PDE-solver enabling more ad-
vanced density distributions and feedback functions can also
be looked into, as well as continuing the work in [8] of
analyzing the control properties in terms of collision-avoidance
and robustness.
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